Sp(n), THE SYMPLECTIC GROUP

CONNIE FAN

1. INTRODUCTION
1.1. Definition. Sp(n) = O(n,H) = {A € M, (H)|A*A = I} is the symplectic group.

1.2. Example.
Sp(1) = {z € My(H)]z| = 1}
={z=a+ib+jetkdla®+ b+ +d* =1}
~ G3

2. THE LIE ALGEBRA SP(N)

2.1. Definition. A matrix A € M, (H) is skew - symplectic if A +*A = 0.

2.2. Definition. sp(n) = {4 € M, (H)|A +'A = 0} is the Lie algebra of Sp(n)
with commutator bracket [A,B] = AB - BA.

Proof. This was proven in class.

2.3. Fact. sp(n) is a real vector space.

Proof. Let A, B € sp(n) and a,b € R
(aA+bB) +taA+bB = a(A+*A) +b(B+'B)=0
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2.5. Proposition. If A € sp(n), then e/t € Sp(n), ie. exp : sp(n) — Sp(n)

ta ta 1
Proof. I = ¥ = At A = el 4 = A . teA

O
2.6. Proposition. If G = Sp(n), then T; = sp(n)
Proof. The proof was done in class.
T C{skew matrices} and {skew matrices} C T¢, so T = {skew matrices}.

0
2.7. Corollary. dim(Sp(n)) = (2n+ 1)n
Proof. dim(Sp(n)) = dim(Ts,) = dim(sp(n)) = (2n + 1)n

U

3. INTERESTING ISOMORPHISMS

3.1. Invariants. In order for a group to be isomorphic to Sp(n), it must have the same
invariants to preserve structure. Rank and dimension are numerical invariants. The center
is a subgroup invariant.

When comparing Sp(n) to other matrix groups with the same rank for some rank > 4,
dim U < dim SU < dim SO(even) < dim SO(odd) = dim Sp ™

Thus, for odd dimensions, SO(n) = {A € O(n)|det A= 1} might be isomorphic. However,
SO(n) has center {I}, while Sp(n) has center +1, so that means for rank > 4, Sp(n) is not
isomorphic to U(n), SU(n), and SO(n).

What about for rank 1, 2, and 37
For rank 1: Sp(1), SU(2), and SO(3) all have dimension 3. Sp(1) and SO(3) are not isomor-
phic because they have different centers, but as proved in the homework [PS 2],

SO(3) = Sp(1)/{=I}.

3.2. Proposition. Sp(1) = SU(2) = {A € U(2)|det A= 1}

Proof. Let z € Sp(1), z = a +ib+ jc + kd.

In our homework [PS 1] we showed the map ¢ : H — M,(C) given by
a+ib cHid

—c+1id a—1b

is an injective algebra homomorphism.

é(a+ib + je+ kd) =

To show that the map is also an isomorphism ¢ : Sp(1) — SU(2), I show
1) Vz,z € Sp(1), ¢(z) € SU(2)
Let 2z =a+1ib+ je+kd. Then a® +b* +® +d* = 1.
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a+ib c+1id a—1b —c—1id
—c+1id a—1b c—1id a-+1b
a +b2+c + d? 0

7=
(o

det(¢(z)) = 1. Thus, ¢(z) € SU(2).

2) Next I show ¢ is surjective, ie. for every A € SU(2), there is some z € Sp(1) such
that A = ¢(2).

Let A = (3‘ f) € SU(2),a,8,B,v € C

det(A)=1, so ad — py = 1.
Also, A € SU(2) C U(2) = O(2,C), so the rows of A form an orthonormal basis for C2.
Thus, § = & and v = —f.
Let « = a+1b and 8 = c+ id, then set z = a + ib + jc + kd.
z € Sp(1) since a® +b* + ¢ + d*> = 1. Also, A = ¢(z).
U

For rank 2, Sp(2) and SO(5) both have dimension 10. For rank 3, Sp(3) and SO(7) both
have dimension 21. Again, however, the centers are different so they are not isomorphic.

There are some isometries to groups that we did not go over in class. Of particular interest
are isometries to the Spin(n) group.

3.3. Definition. The real algebra Cj, (called the Clifford algebra) of dimension 2*
is generated by ey, es, ..., e; such that e? = —1 and eje; = —eje; if i # j.

3.4. Example. Cy =

For (1, let the basis be {1, e}.

Let 1 be the multiplicative identity. e = —1. Multiplication is
(a + be)(c+ de) = (ac — bd) + (ad + bc)e

So C, =C

3.5. Proposition. If C} denotes the group of units in Cy, then S*~! C C;.
(S*¥=1 is the unit sphere in R)

Proof. See [1] p. 135.

3.6. Definition. Pin(k) is the subgroup of C} generated by S*~1.
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3.7. Definition. a(e;) = —e; is an automorphism of C

3.8. Definition. For u € Pin(k) and z € R*,

p(u)(x) = o(u)ru”
* is conjugation in Cj,

3.9. Proposition. If u € S¥! CPin(k) and u # +1,
then p(u) is reflection in R* in the hyperplane perpendicular to u.

Proof. See [1] p. 136.

3.10. Definition. Spin(k)= p~'(SO(k))
From a topological perspective, Spin(n) is the double cover of SO(n).

3.11. Example. ¢, =C

Cy =C—-{0}

SO == {61, —61}

Pin(1) = {e1,€? = —1,€3 = —ey, e} = 1}
p(e1) = p(—ey) is the reflection

Spin(l) = {1, -1}

Spin(3) = {a + bejes + cejes + deges|a® + b* + 2 + d* = 1}
The assignment

e1eg 1

€163 — ]

€963 > k

gives an isomorphism Spin(3) = Sp(1)
Also,

Spin(4) = Sp(1) x Sp(1)

Spin(5) = Sp(2)

Like SO(n), Spin(n) has dimension @ Also, the center of Spin(n) for odd n is {£1},
so Spin(2n+1) is a good candidate for isomorphism with Sp(n). However, for n > 3 this is
not the case. If Spin(2n+1) 2 Sp(n), then S22l o Sp() “pyo 1yormalizer of a maximal

center center” ;
torus in 220 splits for n=1,2, while the normalizer in a maximal torus for Spin(nt1) splits
center center
for alln € Z*.
Proof. See chapter 11 of [1]. O

3.12. Summary. Here is a summary of isomorphisms of Sp(n) that were mentioned:
Sp(1) = S3, SU(2), Spin(3)

Sp(2) = Spin(5)

SO(3) = Sp(1)/{+I}

Spin(4) = Sp(1) x Sp(1)

Basically, the isomorphisms occur in low dimensions and are “accidental”.
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